Automatic G1 arc spline interpolation for closed point set
نویسندگان
چکیده
A method for generating an interpolation closed G arc spline on a given closed point set is presented. For the odd case, i.e. when the number of the given points is odd, this paper disproves the traditional opinion that there is only one closed G arc spline interpolating the given points. In fact, the number of the resultant closed G arc splines fulfilling the interpolation condition for the odd case is exactly two. We provide an evaluation method based on the arc length as well such that the choice between those two arc splines is made automatically. For the even case, i.e. when the number of the given points is even, the points are automatically moved based on weight functions such that the interpolation condition for generating closed G arc splines is satisfied, and that the adjustment is small. And then, the G arc spline is constructed such that the radii of the arcs in the spline are close to each other. Examples are given to illustrate the method. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Geometric Hermite interpolation by logarithmic arc splines
This paper considers the problem of G1 curve interpolation using a special type of discrete logarithmic spirals. A ”logarithmic arc spline” is defined as a set of smoothly connected circular arcs. The arcs of a logarithmic arc spline have equal angles and the curvatures of the arcs form a geometric sequence. Given two points together with two unit tangents at the points, interpolation of logari...
متن کاملGeometric Hermite interpolation by cubic G1 splines
In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملEfficient circular arc interpolation based on active tolerance control
In this paper, we present an ef®cient sub-optimal algorithm for ®tting smooth planar parametric curves by G 1 arc splines. To ®t a parametric curve by an arc spline within a prescribed tolerance, we ®rst sample a set of points and tangents on the curve adaptively as well as with enough density, so that an interpolation biarc spline curve can be with any desired high accuracy. Then, we construct...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 36 شماره
صفحات -
تاریخ انتشار 2004